Looking at distribution of finite orbits
Recall Th Let $R_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a rotation by an angle α, then either
(a) every orbit has period of where ($\alpha=\frac{p}{q}$ in reduced form)
(b) every orbit is dense $(\alpha \notin \mathbb{Q})$

How to build rational rotations with ur bits being less and less sparse.

Naive approach

$$
\alpha=\frac{1}{n} \quad \text { not helps il } \quad i
$$

Issue: the limiting rotation $\#$ is $\alpha=0$ which io uninteresting
want: something irrational in limit?

Another more interesting example:
Start with $R_{1 / 3}$

the gap between 0 and 3α is
po so

$$
\begin{aligned}
& \beta=1-3 \alpha \\
& 5 \beta=\alpha
\end{aligned}
$$

now can solve!

$$
\begin{aligned}
& \frac{\alpha}{5}=1-3 \alpha \\
& 3 \alpha+\frac{\alpha}{5}=1 \\
& \alpha\left(3+\frac{1}{5}\right)=1 \\
& \alpha=\frac{1}{3+\frac{1}{5}} \text { first step of } \quad \text { a continued } \\
& =\frac{5}{16}
\end{aligned}
$$

Check

3 steps to come back to wedge and each step is like β

15t return map to $[0, \alpha)$:
If $x \in[0, \alpha)$ define
$F(x)=1^{\text {st }}$ time the forward orbit of x revisits $[0, a)$.

In the example, if the wedge is streched into a circle, the $1^{\text {st }}$ return map is another rotation by angle $\frac{1}{5}$
Exercise 1)
find equations explaining why we can think of the first return of $\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}}}$ to the interval $[0, a)$ as a rotation by $\frac{1}{a_{2}}$.

We can iterate this procedure!

return of
this regime Go around 4 times to get periodic

$$
\frac{1}{5} \rightarrow \frac{1}{5+\frac{1}{4}} \text { new } \alpha \text { is ... }
$$

$$
\alpha=\frac{1}{3+\frac{1}{5+\frac{1}{4}}}
$$

First return maps
Defflet $f: x \rightarrow x$ be a dynamical
System and $A \subset X$
(our wedge before)
The first return dynamics to A is the dynamical system
$F: A \rightarrow A$ such that
$F(x)=$ the first positive iterate $f^{k}(x)$ such that $f^{k}(x) \in A$.

Exercise 2
Prove that the first return map of R_{α} for the interval of $[0, \alpha)$
b conjugated to the rotation
by angle $\frac{1}{\alpha}-\left\lfloor\frac{1}{\alpha}\right\rfloor$
Exercise of
Draw some orbits and connect to the lecture $\alpha=\frac{1}{2+\frac{1}{3}}=\frac{3}{7}$ and $\alpha=\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=\frac{5}{14}$

