Looking at distribution of Finite orbits
Recall Thm Let
$$R_{\alpha}: R_{\alpha} \rightarrow R_{\alpha}$$

be a rotation by an angle α , then either
(a) every orbit has period of where
(a) every orbit is dense ($\alpha \notin \Omega$)
(b) every orbit is dense ($\alpha \notin \Omega$)
How to build rational votations with
cr bits being less and less sparse.
Naive approach
 $q = \frac{1}{n}$ not helpful ::
Issue: the limiting rotation $\#$ is $\alpha = 0$
which is wrinteresting
Womt: something irrational in limit?

3 steps to come back to wedge
and each step is like
$$\beta$$

1St return map to Eo_1A):
14 $x \in Eo_1A$) define
 $F(x) = 1$ St time the forwards
orbit $g_1 x$ revisits Eo_1A).
In the example, if the wedge is
steched into a circle, free 1St
return map is another to those
by angle $\frac{1}{5}$
Exer (15c 1)
find equations explaining why we
can think of the interval Eo_1A)
as a rotation by $\frac{1}{a_2}$.
We can iterate this procedure!
 $a = \frac{1}{a_1 + \frac{1}{a_2}}$ to the interval Eo_1A)
 $a = \frac{1}{5} + \frac{1}{5 + \frac{1}{4}}$ new dis ...

$$Q = \frac{1}{3 + \frac{1}{5 + \frac{1}{4}}}$$
First return maps
Defilet f: X=X be a dynamical
System and A = X
(our wedge begae)
The first return dynamics to A
is the dynamical system
F: A => A such that
F(x) = the first positive literate
fK(x) such that fK(x) = A.
Exercise 2]
Prove that the first return mp
q Rax for the intrival of [0,9]
is conjugated to the rotation
by angle $\frac{1}{4} - \frac{1}{4}$
Exercise 0)
Draw some orbits and connect
to the lecture $d = \frac{1}{2 + \frac{1}{4}} = \frac{3}{4}$
and $d = \frac{1}{2 + \frac{1}{4}} = \frac{5}{14}$